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LE'ITER TO THE EDITOR 

An observation on the partition function zeros of the hard 
hexagon model 

D W Wood, R W Turnbull and J K Ball 
Department of Mathematics, University of Nottingham, Nottingham NG7 2RD, U K  

Received 21 October 1988 

Abstract. It is conjectured that part of the limiting locus of partition function zeros for 
the hard hexagon model is an algebraic curve generated by a simple and rational algebraic 
equation. This equation arises from the same mathematical mechanism as that which 
determines algebraic-invariant properties of self-dual systems. A remarkable approximation 
to the critical point of the three-state Potts model (triangular lattice) is mentioned in passing. 

The observation reported here originates from a combination of recent work in the 
theory of critical phenomena by the present authors (Wood 1987, 1988, Wood et al 
1987, Wood and Turnbull 1988) and the recent work of Joyce (1988) on the thermo- 
dynamic functions of the hard hexagon model, which suggests that the limiting locus 
of partition function zeros for the hard hexagon model is determined by a simple 
algebraic equation. The work of the present authors seeks to understand the emergence 
of critical-point phenomena in the thermodynamic limit in terms of the sequence of 
algebraic functions A,(  m, z) which determine the partition functions of a sequence of 
semi-infinite m x CO lattice sections. The m + 00 limit of this function sequence defines 
the partition function per site Z ( z )  of the model 

Z ( z )  = lim (A:(m, z))'" (1) 
m-m 

where A:( m, z) is the function element of A,( m, z) which is maximum in modulus on 
the real positive z axis, and z is some suitable temperature variable. 

For the hard hexagon model the partition function is the grand canonical partition 
function B and z is the activity variable. Joyce's work has shown that for this model 
the limit B(z )  given by (1) is also an algebraic function in the sense that it is a function 
element of an algebraic equation. For m finite it is possible to find the limiting locus 
of zeros of a block partition function (see equation (4)) in terms of the function 
elements of A,(m, z) (Wood 1987). This locus is an algebraic curve denoted by CL+, 
in the limit of m + CO it is envisaged that this sequence of algebraic curves will converge 
onto a limiting curve C,; this curve and the distribution of zeros on it define the 
partition functions per site in (1). The question arises as to whether C,  can be obtained 
from the function elements of Joyce's algebraic equation for S(z). We believe that 
the numerical evidence given here suggests that C,  can be found in this way; if this 
is so then the mathematical mechanism which locates C,  is especially interesting since 
it is precisely the mechanism which appears in models with self-dual symmetry, namely 
simple complex conjugation of roots of algebraic equations. 
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Let T,(z) be the transfer matrix relating to an m x CO lattice strip. The characteristic 
equation of T,(z) can be factored into irreducible polynomial factors pk(z,  & )  in the 
form 

/ T m ( z ) - A I / = n  Pk(Z,Ak). 
k 

The algebraic function A,(m, z )  is determined by the polynomial equation 
S 

Pl(z ,  A,) = c # J r ( z ) A i P r  = 0 
r = O  

(3) 

which is the characteristic equation of a block T ~ ( z ,  m )  obtained in a block diagonalisa- 
tion of T,(z), and where # J r ( z )  are polynomials. We use the block T , ( z ,  m )  to define 
the block partition function Z:L(z) for an m x n lattice as 

Z L i ( z )  =Tr(T1(z, m))". (4) 

The block partition function per site of the m x CO section is equal to the partition 
function per site which is (A:(m, z))'". In the limit of n + a3 (2:; is a polynomial 
in z with positive coefficients) the zeros of the block partition function lie on an 
algebraic curve C!,+ determined by the function elements z ( h )  of the polynomial 
resolvent equation (see Wood 1987) 

R ( h ,  z )  = Ampz"hP = 0 
"P 

where the A,, are integers and Ih( = 1. For a fixed h the function elements z ( h )  of 
the algebraic function defined by ( 5 )  locate points in the z plane where the function 
elements of A, contain pairs which are in ratio h. The algebraic curve C F  is a cut in 
the z plane joining the branch points of AI where the function elements are simul- 
taneously equal and maximum in modulus. For the hard hexagon model and m = 12 
this curve is shown in figure 1 where denotes a branch point. 

I 
: - 5  01 5 10 - 

Figure 1. The algebraic curve Cl: and the section of the algebraic curve generated by the 
algebraic equation (18) which is conjectured to be part of C,. 
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Consider now a typical self-dual system such as the q-state Potts model (see Wu 
1982) on the square lattice where on an m x n toroidal lattice the partition function 
Z,, satisfies the duality relation 

where z = e K  and 

( z - l ) ( Z * - l ) = q .  (7)  

In the limit of n += 03, and defining the duality variable U by z = 1 + f i u  ( U *  = U-')  

equation ( 6 )  becomes 

(u-')"A:(q, U, m) = u"h:(q, U- ' ,  m). (8) 

Hence we see that if we write the characteristic equation (3) in terms of the variable 
y = u-'"Al the whole equation must be invariant under the transformation U -$ U-' and 
it will always be possible to write (3) in the reduced form 

where w = U + U - ' .  

We can now guess part of the geometry of Ck+ by inspection since for real w the 
function elements of y are either real or in complex conjugate pairs, hence the roots 
of ( 5 )  on the domain of 1/11 = 1 and h real contain the whole circle z = 1 +v$ eie (where 
w = 2 cos 0)  for all m; CL+ will be an arc of this circle if a branch point of A:( m, z )  
lies on the circle. Numerical work suggests that this is always the case and indeed 
that the ferromagnetic critical point at z, = 1 + fi is the limit point of a sequence of 
such branch points moving along this circle and converging onto z ,  in the limit of 
m+co. The exact critical point is in fact a value of z corresponding to an algebraic 
singular point of z(h) defined by (5 )  (see Wood et al 1987). We have frequently 
observed that for most models such algebraic singular points often lie very close to 
the true critical point (in the case of the hard hexagon model the true critical point 
appears to be invariantly a singular point of z(h) (Wood and Turnbull 1988)). We 
mention in passing a recent example of this phenomenon found for the three-state 
Potts model on the triangular lattice where a singular point in z( h )  at m = 4 corresponds 
to a value of z = 1.879 382 463 . . . . The true critical point is believed to be the root of 
the equation z3 -32 - 1 = 0 at z = 1.879 385 2 4 .  . .( !). In summary the mechanism which 
defines CG and an invariant part of C,  is simply the complex conjugation of roots 
in a reduced characteristic equation along a curve in the z plane determined by a 
rational algebraic equation, which for the Potts model is the equation 

U2- wu + 1 = 0 (10) 

for real w. 
Now we can consider Joyce's result for the hard hexagon model, namely that E( z ) ,  

for real z in the high-density regime z 2 z,, is a function element of the algebraic 
equation 

(z')'fl ;O(z')y4 - f l 3 ( ~ ' ) (  1458~'O:(~' )  + O:( z'))Y' 

-310(2430z'O:(z')+fl:(z'))y2-3'9f13(Z')y -3*'= 0 (11)  
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where z’ = z-’ and 

y = p (12) 

n , (z ’ )=l - l lz ’ - (Z’)2  (13) 

n 3 ( ~ ’ ) =  1 - 5 2 2 ~ ’ -  1 0 0 0 5 ( ~ ‘ ) ~ -  1 0 0 0 5 ( ~ ’ ) ~ + 5 2 2 ( ~ ’ ) ~ + ( ~ ’ ) ~ .  (14) 

w = z’n:(z’)/n:(z’) (15) 

and R I  and On3 are the polynomials 

Equation (1 1) of Joyce (1988) can be parametrised by the rational function 

since on writing 
y = -3’h/n3 

we obtain the reduced algebraic equation 

3 ’ ~ ~ A ~ + 1 4 5 8 w A ~ - 7 2 9 0 w h ~ + ( h  - l ) 3 = 0 .  (17) 
Equation (17) highlights the branch points of cycle number 3 occurring at the zeros 
of w, which are at the two singular points of E, z = f( 11 + 5 8 ) ,  and at z = 0 and CD. 

One naturally speculates on how (or if) the algebraic equation (1 1) emerges from 
the sequence of algebraic equations (3) in the limit of m+co where on writing 
A,(m, z )  = {E(m, z)}” one branch of (3) is the partition function per site of the m , x m  
strip. We know that for sufficiently large m a branch of (3) can be made arbitrarily 
close to the partition function per site E obtained from (1 1). Are other branches of 
(3) also convergent upon any of the other branches of ( l l ) ?  At sufficiently large m 
the endpoints of Ck+ (and branch points of A:) can be made arbitrarily close to the 
two real singular points z = ;( 11 f 5 8 )  and it seems reasonable to suppose that the 
function elements of (3) participating in these branch points are also close approxima- 
tions to the branches of (11) participating in the branch point at z,. Thus we expect 
that C r  would contain an algebraic curve convergent upon some section of the 
algebraic curves generated by the resolvent function (5) dejned on the algebraic equation 
(1 1). The reduction of (1 1) to (17) re-establishes the situation occurring with self-dual 
systems in that we can guess by inspection some of the algebraic curves from this 
resolvent. The analogue of (10) is the rational algebraic equation 

z’R:(z’) = Wn:(z’) (18) 
(where w is real) tracing out an algebraic curve through the function elements z(w). 
Those sections of these curves along which complex conjugate roots of (17) are 
simultaneously maximum in modulus, we would conjecture to be part of C,; we have 
shown this curve in figure 1 labelled as C,. This curve is neatly nested inside C:: 
and clearly appears to be a scaled version of it. Extending Ci: by adding the domain 
h real to ( 5 )  produces a smooth continuation through the branch point to an 
orthogonal intersection with the real axis at z = 11.1331 . . . ( z ,  = 11.090 1 7 . .  .). 

The curve C, in figure 1 approaches the real critical point along two pairs of 
complex conjugate curves making angles of $n; and $T with the negative real axis 
direction. The two prongs which are terminated in figure 1 describe another closed 
loop meeting the negative axis at a large distance from the origin. If the curve C, 
approached z, along only one pair of complex conjugate curves then we would expect 
an orthogonal crossing of the real axis at z,. This is based on the scaling conjecture 
of Itzykson et a1 (1983) that the angle of contact c$ with the negative z axis is given by 

tan[(2-cu)c$]=(cos .rra-A-/A+)/sin ~ T C Y  (19) 
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where (Y is the specific heat exponent and A+, A- are the coefficients in the leading 
singular terms in the free energy. For the hard hexagon model (Y = f and A+ = A- 
(Baxter 1982). 
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